Worksheet: Work & Power Problems Answer Key

I. Work A. Sample Problems:

1. F = 200 Newtons	Formula: $W = Fd$
d = 50 meters	Substitution: $W = (200 N)(50 m)$
W = ?	Answer with unit of measure: $W = 10,000 J$
2. F = 5 Newtons	Formula: $\mathbf{d} = \mathbf{W}/\mathbf{F}$
W = 75 Joules	Substitution: $\mathbf{d} = 75 \text{ J/5 N}$
d = ?	Answer with unit of measure: $\mathbf{d} = 15 \text{ m}$
3. W = 125 Joules	Formula: $\mathbf{F} = \mathbf{W}/\mathbf{d}$
d = 10 meters	Substitution: $\mathbf{F} = 125 \text{ J}/10 \text{ m}$
F = ?	Answer with unit of measure: $\mathbf{F} = 12.5 \text{ N}$
4. If 150 Joules of work	is needed to move a box 10 meters, what force was used?
W = 150 J	$\mathbf{F} = \mathbf{W}/\mathbf{d}$ $\mathbf{F} = 15 \mathbf{N}$

d = 10 m

1. Work is done when an object moves through a distance because of a force acting upon the object.

2. When calculating work, you should use the formula: work = force X distance.

F = 150 J/10 m

3. The SI unit for work is the **Joule**. It is represented by the letter **J**.

C. Work Problems:

B. Fill-in-the-blank:

4.	F = 90 N	W=Fd	5. F = 6 N	d=W/F	6. W = 120 J	F=W/d
	d = 5 m	90(5)	W = 72 J	72/6	d = 24 m	120/24
	W = ?	450 J	d = ?	12 m	F = ?	5 N
7.	W = ?	W = Fd	8. $W = 13.2 J$	d = W/F	9. W = 136 J	F = W/d
	F = 62.6 N	62.6(13)	F = 2 N	13.2/2	d = 27.2 m	136/27.2
	d = 13 m	813.8 J	d = ?	6.6 m	F = ?	5 N

- 10. If 360 Joules of work are needed to move a crate a distance of 4 meters, what is the weight of the crate? W = 360 J F = W/d F = 90 Nd = 4 m F = 360 J/4 m
- 11. If a group of workers can apply a force of 1000 Newtons to move a crate 20 meters, what amount of work will they have accomplished? F = 1000 N W = Fd W = 20,000 Jd = 20 m W = 1000(20)
- 12. If 68 Joules of work were necessary to move a 4 Newton crate, how far was the crate moved? W = 68 J d = W/F d = 17 mF = 4 N d = 68 J/4N
- 13. How much work is done in holding a 15 N sack of potatoes while waiting in line at the grocery store for 3 minutes. Not moving F = 15 N W = Fd W = 0 Jd = 0 m W = 15(0)

II. Power A. Samples

```
1. W=500 Joules
                                 Formula: \mathbf{P} = \mathbf{W}/\mathbf{t}
                                 Substitution: P = 500 \text{ J/}25 \text{ sec}
    t = 25 seconds
    \mathbf{P} = ?
                                 Answer with unit of measure: 20 W
2. P = 25 watts
                                 Formula: \mathbf{t} = \mathbf{W}/\mathbf{P}
    W = 5000 Joules
                                 Substitution: t = 5000 \text{ J/}25 \text{ W}
    t = ?
                                 Answer with unit of measure: t = 200 sec
3. P = 170 watts
                                 Formula: W = Pt
    t = 20 seconds
                                 Substitution: W = 170 W(20 \text{ sec})
    W = ?
                                 Answer with unit of measure: W = 3,400 \text{ J}
```

4. If a man moves a large box that weighs 10 Newtons 20 meters in 30 seconds, how much power was used?
F = 10 N
P = W/t and W = Fd, so P = Fd/t
d = 20 m
t = 30 sec
P = 6.67 W

B. Fill-in-the-blank:

- 1. **Power** is the rate at which work is done.
- When calculating power, you should use the formula P = work divided by time. In this formula, "P" stands for power, W stands for work, and t for time.
- 3. The SI unit for Power is the Watt.

C. Power Problems

4.	W = 100 J	$\mathbf{P} = \mathbf{W}/\mathbf{t}$	5. W = 225 J	$\mathbf{t} = \mathbf{W}/\mathbf{P} \qquad 6.$	P = 20 W	W = Pt
	t = 10 s	P = 100/10	P = 25 W	t = 225/25	t = 15 s	$W = 20 \times 15$
	$\mathbf{P} = ?$	P = 10 W	t = ?	t = 9 sec	W = ?	W = 300 J
_						
7.	W = 500 J	$\mathbf{P} = \mathbf{W}/\mathbf{t}$	8. $W = 336 J$	$\mathbf{t} = \mathbf{W}/\mathbf{P} \qquad 9.$	W = ?	W = Pt
	t = 25 s	P = 500/25	t = ?	t = 336/14	t = 16.6 s	W = 64(16.6)
	P = ?	P = 20 W	P = 14 W	t = 24 sec	P = 64 W	W = 1,062.4 J

10. A person weighing 600 N gets on an elevator. The elevator lifts the person 6 m in 10 seconds. How much power was used? $\mathbf{F} = 600 \text{ N}$ $\mathbf{P} = \mathbf{F} \mathbf{d}/t$

How much power was used?	F = 600 N	$\mathbf{P} = \mathbf{F}\mathbf{d}/\mathbf{t}$
-	d = 6m	$P = (600 \ x \ 6)/10$
	t = 10 sec	$\mathbf{P} = 360 \ \mathbf{W}$
11. How much time is needed to pr	oduce 720 Joules of wor	k if 90 watts of power is used?
$\mathbf{W} = 720 \mathbf{J} \qquad \mathbf{t} = \mathbf{W}$	t = 8 sc	ec
$\mathbf{P} = 90 \ \mathbf{W} \qquad \mathbf{t} = 72$	20 J/90 W	
12. If 68 W of power is produced in	18 seconds, how much	work is done?
$\mathbf{P} = 68 \ \mathbf{W} \qquad \mathbf{W} = 0$	Pt W = 1,	224 J
t = 18 sec W =	68(18)	
13. A set of pulleys lifts an 800 N 4	meters in 7 seconds. W	hat power was used?

5. It set of pune js mits	un ooo it i meters m /	seconds. What power	mub ube
F = 800 N	$\mathbf{P} = \mathbf{F}\mathbf{d}/\mathbf{t}$	P = 457.1 W	
d = 4 m	P = 800(4)/7		
t = 7 sec			