Worksheet: Work \& Power Problems Answer Key

I. Work

A. Sample Problems:

1. $\mathrm{F}=200$ Newtons $\mathrm{d}=50$ meters $\mathrm{W}=$?
2. $\mathrm{F}=5$ Newtons $\mathrm{W}=75$ Joules $\mathrm{d}=$?
3. $\mathrm{W}=125$ Joules $\mathrm{d}=10$ meters $\mathrm{F}=$?

Formula: W = Fd
Substitution: $\mathbf{W}=(\mathbf{2 0 0} \mathrm{N})(50 \mathrm{~m})$ Answer with unit of measure: $\mathbf{W}=\mathbf{1 0 , 0 0 0} \mathbf{J}$

Formula: $\mathbf{d}=\mathbf{W} / \mathbf{F}$
Substitution: $\mathrm{d}=75 \mathrm{~J} / 5 \mathrm{~N}$
Answer with unit of measure: $\mathbf{d}=\mathbf{1 5} \mathbf{~ m}$
Formula: $\mathbf{F}=\mathbf{W} / \mathbf{d}$
Substitution: $\mathrm{F}=\mathbf{1 2 5} \mathrm{J} / 10 \mathrm{~m}$
Answer with unit of measure: $\mathrm{F}=\mathbf{1 2 . 5} \mathrm{N}$
4. If 150 Joules of work is needed to move a box 10 meters, what force was used?

$$
\begin{array}{lll}
\mathrm{W}=150 \mathrm{~J} & \mathrm{~F}=\mathrm{W} / \mathrm{d} & \mathrm{~F}=15 \mathrm{~N} \\
\mathrm{~d}=10 \mathrm{~m} & \mathrm{~F}=150 \mathrm{~J} / 10 \mathrm{~m} &
\end{array}
$$

B. Fill-in-the-blank:

1. Work is done when an object moves through a distance because of a force acting upon the object.
2. When calculating work, you should use the formula: work = force X distance.
3. The SI unit for work is the Joule. It is represented by the letter \mathbf{J}.

C. Work Problems:

4. $\begin{aligned} & \mathrm{F}=90 \mathrm{~N} \\ & \mathrm{~d}=5 \mathrm{~m} \\ & \mathrm{~W}=? \end{aligned}$	$\begin{aligned} & W=F d \\ & 90(5) \\ & 450 \text { J } \end{aligned}$	5. $\begin{aligned} & \mathrm{F}=6 \mathrm{~N} \\ & \mathrm{~W}=72 \mathrm{~J} \\ & \mathrm{~d}=? \end{aligned}$	$\begin{aligned} & \mathrm{d}=\mathrm{W} / \mathrm{F} \\ & 72 / 6 \\ & 12 \mathrm{~m} \end{aligned}$	$\text { 6. } \begin{gathered} \mathrm{W}=120 \mathrm{~J} \\ \mathrm{~d}=24 \mathrm{~m} \\ \mathrm{~F}=? \end{gathered}$	$\begin{aligned} & F=W / d \\ & 120 / 24 \\ & 5 \mathrm{~N} \end{aligned}$
7. $\mathrm{W}=$?	$\mathrm{W}=\mathrm{Fd}$	8. $\mathrm{W}=13.2 \mathrm{~J}$	d $=\mathbf{W} / \mathrm{F}$	9. $\mathrm{W}=136 \mathrm{~J}$	$\mathbf{F}=\mathbf{W} / \mathbf{d}$
$\mathrm{F}=62.6 \mathrm{~N}$	62.6(13)	$\mathrm{F}=2 \mathrm{~N}$	13.2/2	$\mathrm{d}=27.2 \mathrm{~m}$	136/27.2
$\mathrm{d}=13 \mathrm{~m}$	813.8 J	$\mathrm{d}=$?	6.6 m	$\mathrm{F}=$?	5 N

10. If 360 Joules of work are needed to move a crate a distance of 4 meters, what is the weight of the $\begin{array}{llll}\text { crate? } & W=360 \mathrm{~J} & \mathrm{~F}=\mathrm{W} / \mathrm{d} & \mathrm{F}=90 \mathrm{~N} \\ & \mathrm{~d}=4 \mathrm{~m} & \mathrm{~F}=360 \mathrm{~J} / 4 \mathrm{~m} & \end{array}$
$\mathrm{d}=4 \mathrm{~m} \quad \mathrm{~F}=360 \mathrm{~J} / 4 \mathrm{~m}$
11. If a group of workers can apply a force of 1000 Newtons to move a crate 20 meters, what amount of work will they have accomplished? $\quad F=1000 \mathrm{~N} \quad \mathrm{~W}=\mathbf{F d} \quad \mathrm{W}=\mathbf{2 0 , 0 0 0} \mathrm{J}$

$$
\begin{array}{ll}
\mathrm{F}=\mathbf{1 0 0 0} \mathrm{N} & \mathrm{~W}=\mathbf{F d} \\
\mathbf{d}=\mathbf{2 0} \mathrm{m} & \mathrm{~W}=\mathbf{1 0 0}
\end{array}
$$

$W=20,000 \mathrm{~J}$
2. If 68 Joules of work were necessary to move a 4 Newton crate, how far was the crate moved?

$\mathrm{W}=68 \mathrm{~J}$	$\mathrm{~d}=\mathrm{W} / \mathrm{F}$	$\mathrm{d}=17 \mathrm{~m}$
$\mathrm{~F}=4 \mathrm{~N}$	$\mathrm{~d}=68 \mathrm{~J} / 4 \mathrm{~N}$	

$$
\mathrm{F}=4 \mathrm{~N}
$$

$$
d=68 \mathrm{~J} / 4 \mathrm{~N}
$$

$$
1=17 \mathrm{~m}
$$

13. How much work is done in holding a 15 N sack of potatoes while waiting in line at the grocery $\begin{array}{llll}\text { store for } 3 \text { minutes. } \quad \text { Not moving } & \begin{array}{l}\mathrm{F}=\mathbf{1 5} \mathrm{N} \\ \mathrm{d}=0 \mathrm{~m}\end{array} & \begin{array}{l}\mathrm{W}=\mathbf{F d} \\ \mathbf{W}=\mathbf{1 5}(0)\end{array} & \mathrm{W}=\mathbf{0} \mathrm{J}\end{array}$

$$
\mathrm{d}=0 \mathrm{~m} \quad \mathrm{~W}=15(0)
$$

II. Power

A. Samples

1. $\mathrm{W}=500$ Joules
$\mathrm{t}=25$ seconds
$\mathrm{P}=$?
2. $\mathrm{P}=25$ watts $\mathrm{W}=5000$ Joules $\mathrm{t}=$?
3. $\mathrm{P}=170$ watts
$\mathrm{t}=20$ seconds $\mathrm{W}=$?

Formula: $\mathbf{P}=\mathbf{W} / \mathbf{t}$
Substitution: $P=\mathbf{5 0 0} \mathbf{J} / 25 \mathrm{sec}$
Answer with unit of measure: $\mathbf{2 0} \mathbf{W}$
Formula: $\mathbf{t}=\mathbf{W} / \mathbf{P}$
Substitution: $\mathbf{t}=\mathbf{5 0 0 0} \mathrm{J} / \mathbf{2 5} \mathrm{W}$
Answer with unit of measure: $\mathbf{t}=\mathbf{2 0 0} \mathbf{~ s e c}$
Formula: $\mathbf{W}=\mathbf{P t}$
Substitution: W = $170 \mathrm{~W}(20 \mathrm{sec})$
Answer with unit of measure: $\mathrm{W}=3,400 \mathrm{~J}$
4. If a man moves a large box that weighs 10 Newtons 20 meters in 30 seconds, how much power was used?

$$
\begin{array}{ll}
\mathrm{F}=10 \mathrm{~N} & \mathrm{P}=\mathrm{W} / \mathrm{t} \text { and } \mathrm{W}=\mathrm{Fd}, \text { so } \mathrm{P}=\mathrm{Fd} / \mathrm{t} \\
\mathrm{~d}=20 \mathrm{~m} & \mathrm{P}=(10 \mathrm{~N} \times 20 \mathrm{~m}) / 30 \mathrm{sec} \\
\mathrm{t}=30 \mathrm{sec} & \mathrm{P}=6.67 \mathrm{~W}
\end{array}
$$

B. Fill-in-the-blank:

1. Power is the rate at which work is done.
2. When calculating power, you should use the formula $\mathrm{P}=$ work divided by time. In this formula, "P" stands for power, \mathbf{W} stands for work, and \mathbf{t} for time.
3. The SI unit for Power is the Watt.

C. Power Problems

$\text { 4. } \begin{aligned} & W=100 \mathrm{~J} \\ & \mathrm{t}=10 \mathrm{~s} \\ & \mathrm{P}=\text { ? } \end{aligned}$	$\begin{aligned} & P=W / t \\ & P=100 / 10 \\ & P=10 W \end{aligned}$	$\text { 5. } \begin{aligned} \mathrm{W} & =225 \mathrm{~J} \\ \mathrm{P} & =25 \mathrm{~W} \\ \mathrm{t} & =? \end{aligned}$	$\begin{aligned} & t=W / P \\ & t=225 / 25 \\ & t=9 \sec \end{aligned}$	$\text { 6. } \begin{gathered} P=20 \mathrm{~W} \\ \mathrm{t}=15 \mathrm{~s} \\ \mathrm{~W}=? \end{gathered}$	$\begin{aligned} & W=P t \\ & W=20 \times 15 \\ & W=300 \mathrm{~J} \end{aligned}$
$\text { 7. } \begin{aligned} & W=500 \mathrm{~J} \\ & \mathrm{t}=25 \mathrm{~s} \\ & \mathrm{P}=? \end{aligned}$	$\begin{aligned} & \mathrm{P}=\mathbf{W} / \mathbf{t} \\ & \mathrm{P}=500 / 25 \\ & \mathrm{P}=20 \mathrm{~W} \end{aligned}$	$\text { 8. } \begin{aligned} \mathrm{W} & =336 \mathrm{~J} \\ \mathrm{t} & =? \\ \mathrm{P} & =14 \mathrm{~W} \end{aligned}$	$\begin{aligned} & t=W / P \\ & t=336 / 14 \\ & t=24 \mathrm{sec} \end{aligned}$	$\text { 9. } \begin{aligned} \mathrm{W} & =? \\ \mathrm{t} & =16.6 \mathrm{~s} \\ \mathrm{P} & =64 \mathrm{~W} \end{aligned}$	$\begin{aligned} & W=P t \\ & W=64(16.6) \\ & W=1,062.4 \mathrm{~J} \end{aligned}$

10. A person weighing 600 N gets on an elevator. The elevator lifts the person 6 m in 10 seconds.

$$
\begin{array}{lll}
\text { How much power was used? } & F=600 \mathrm{~N} & P=F d / t \\
& d=6 \mathrm{~m} & P=(600 \times 6) / 10 \\
& t=10 \mathrm{sec} & P=360 \mathrm{~W}
\end{array}
$$

11. How much time is needed to produce 720 Joules of work if 90 watts of power is used?

$$
\begin{array}{lll}
\mathrm{W}=720 \mathrm{~J} & \mathrm{t}=\mathrm{W} / \mathrm{P} & \mathrm{t}=8 \mathrm{sec} \\
\mathrm{P}=90 \mathrm{~W} & \mathrm{t}=720 \mathrm{~J} / 90 \mathrm{~W} &
\end{array}
$$

12. If 68 W of power is produced in 18 seconds, how much work is done?
$\mathrm{P}=68 \mathrm{~W}$
$\mathrm{t}=18 \mathrm{sec}$
$\mathrm{W}=\mathrm{Pt}$
$\mathbf{W}=68(18)$
$\mathrm{W}=1,224 \mathrm{~J}$
$\begin{array}{lrl}t=18 \mathrm{sec} & W=68(18)\end{array}$
13. A set of pulleys lifts an 800 N 4 meters in 7 seconds. What power was used?

$$
\begin{array}{lll}
\mathrm{F}=800 \mathrm{~N} & \mathrm{P}=\mathrm{Fd} / \mathrm{t} & \mathrm{P}=457.1 \mathrm{~W} \\
\mathrm{~d}=4 \mathrm{~m} & \mathrm{P}=800(4) / 7 & \\
\mathrm{t}=7 \mathrm{sec} & &
\end{array}
$$

