23.1 I Scream, You Scream:

What happens to the <u>ice</u> when you make ice cream?

What happens to the ice cream mixture as you make ice cream?

1. Find Freezing point of ice cream.

- **1. Find Freezing point of ice cream.**
- **2.** Determine the H_f of ice cream.

- **1. Find Freezing point of ice cream.**
- **2. Determine the H_f of ice cream.**
- **3. Calculate the heat LOST as ice cream freezes. (Heat lost = heat gained)**

- **1. Find Freezing point of ice cream.**
- **2.** Determine the H_f of ice cream.
- **3. Calculate the heat LOST as ice cream** freezes. (Heat lost = heat gained)
- 4. How much heat did the ice gain when it melted?

*Specific heat of ice cream mixture is 0.80 cal/g

*Stir the test tube in the ice water, not the temperature probe

*Only put the ice cream into the calorimeter, not the test tube

*Make GREAT data tables, use your equations to determine what data is needed

Day 2

Lab Follow-up, Day 1

- 1. Find Freezing point of ice cream.
- **2.** Determine the H_f of ice cream.
- Q lost = Q gained
- How many calories did the water lose?
- **Change of temp:** $\mathbf{Q} = \underline{\mathbf{m}} \cdot \underline{\mathbf{c}} \cdot \underline{\Delta \mathbf{T}}$
- This would equal the calories gained as the ice cream melted and warmed.
- **Change of temp:** $\mathbf{Q} = \underline{\mathbf{m}} \cdot \underline{\mathbf{c}} \cdot \underline{\Delta}\mathbf{T}$
- Phase change (fusion) $\underline{\mathbf{Q}} = \underline{\mathbf{m}} \cdot \mathbf{H}_{f}$

- **1. Temperature of ice cream mixture**
- **2. Ration salt**
- 3. 1st sample of ice cream for experiment
- 4. 100 ml of ice cream mixture = 104.3 grams – bag
- 5. ¹/₂ bag of ice: supplemental 500 g mass
- 6. Reuse ice

Part 1 Corrections

- Calculate the heat LOST as ice cream freezes. (Heat lost = heat gained)
- How much heat did the ice gain when it melted?

Day 3 Super cooled water

- Part 1 Grading Criteria:
- **5. Data Table needed to calculate the heat LOST as as the water cooled and GAINED as the <u>ice cream</u> melts and**

6. Calculate the heat LOST as as the water cooled and the heat GAINED as the <u>ice cream</u> melts and warms:

- Water: $\mathbf{Q} = \mathbf{m} \cdot \mathbf{c} \cdot \Delta \mathbf{T}$
- Ice Cream Warming: $\mathbf{Q} = \mathbf{m} \cdot \mathbf{c} \cdot \Delta \mathbf{T}$
- Ice Cream Melting: Hf = \mathbf{Q} / m

Q (of water) - Q (of liquid ice cream warming) = Q (of heat of fusion for the ice cream)

SHOW EQUATIONS, YOUR WORK & LABEL THE 4 ANSWERS

Lab Follow-up, Part II

How much heat did the *ice* GAIN when it melted?

Calculate the heat LOST as the *ice cream* cools and freezes:

Change of temp: $Q = \underline{m} \cdot \underline{c} \cdot \underline{\Delta T}$ Phase change (fusion) $Q = \underline{m} \cdot \underline{Hf}$

Part 2 Grading Criteria:

1. Data Table needed to calculate the heat LOST as <u>ice cream</u> cools and freezes:

SHOW EQUATIONS, YOUR WORK & LABEL THE 3 ANSWERS

 $\mathbf{Q} = \mathbf{m} \cdot \mathbf{c} \cdot \Delta \mathbf{T}$

2. Calculate the heat LOST as ice cream <u>cools</u> <u>and freezes</u>.

3. Data Table needed to calculate the heat GAINED as the ice melts:

4. Calculate the heat GAINED as ice melts.

$\mathbf{Q} = \mathbf{m} \cdot \mathbf{H}\mathbf{f}$

SHOW EQUATION, YOUR WORK & LABEL THE ANSWER

Homework due Monday:

22 1-6
23 1-10
24 1-6

Labs:

23.1 (part 1) due Tuesday23.1 (part 2) due WednesdayTest: Wednesday Chapters 21-24