Name: \qquad Date: \qquad

Load Combinations Worksheet

Show your work as you use the following load combinations to solve the problem:

Load Combinations

1. Ultimate load = dead load + live load + snow load
2. Ultimate load = dead load + live load + wind load (or earthquake load)
3. Ultimate load = dead load + live load + wind load + (snow load $\div 2$)
4. Ultimate load $=$ dead load + live load + snow load + (wind load $\div 2$)
5. Ultimate load = dead load + live load + snow load + earthquake load

Calculate the five ultimate loads resulting from each combination for the following loads:
Dead load $=100,000 \mathrm{lbs}$
Live load $=30,500 \mathrm{lbs}$
Wind load = 5,020 lbs
Snow load = 400 lbs
Earthquake load $=5,000 \mathrm{lbs}$

From the five ultimate loads calculated above, for which ultimate load amount must the structure be designed?

Problem 1: Using the highest load calculated from the first page, calculate the required area of a rectangular shape made of concrete if it is a pier or a column with a compression force acting on it. If $L=10$ inches, what must B be equal to?
The maximum compressive strength of this concrete is $4,000 \mathrm{lbs} / \mathrm{in}^{2}$. Use the following equations to complete the problem. Show all work and calculations.

Highest ultimate load $=($ max. compressive strength $) \mathrm{x}($ cross-sectional area $)$
Cross-sectional area $=(\mathrm{B}) \times(\mathrm{L})$

Problem 1 cross-sectional area.

Problem 2A: Using the highest load calculated from the first page, calculate the required area of the circular shape made of concrete if it is a pier or a column with a compression force acting on it. What is the radius of this circle? The maximum compressive strength of this concrete is $5,000 \mathrm{lbs} / \mathrm{in}^{2}$.

Problem 2B: Using the highest load calculated from the first page, calculate the required cross sectional area of the I-shape made of steel if it is a pier or a column with a tension force acting on it. The maximum tensile strength of this steel is $\mathbf{5 0 , 0 0 0} \mathrm{lbs} / \mathrm{in}^{2}$.
Use the following equations to complete the problem. Show all work and calculations.
Highest ultimate load $=($ max. compressive strength $) \times($ cross-sectional area $)$
Cross-sectional area of circle $=\pi \times$ (radius) $^{2} \quad \pi=3.14$
Highest ultimate load $=($ max. compressive strength $) \times($ cross-sectional area $)$

Problem 2 cross-sectional areas.

Problem 3A: Using the highest load calculated from the first page, calculate the required Z_{x} of the rectangular shape made of steel if it is a beam or a girder with a length equal to 20 feet (or 240 inches). F_{y} of steel is equal to $\mathbf{5 0 , 0 0 0} \mathrm{lbs} / \mathrm{in}^{2}$.
Problem 3B: What if the same beam was made of concrete with F_{y} equal to $4,000 \mathrm{lbs} / \mathrm{in}^{2}$.
Use the following equations to complete the problem. Show all work and calculations.
$Z_{x}=($ force x length $) \div\left(F_{y} \mathrm{x} 4\right)$
B

[^0]
[^0]: Problem 3 cross-sectional area.

